PIRCS: Approach and Lessons Learned

William Gutowski Iowa State University

With thanks to

R.Arritt, G. Takle,

Z. Pan, J. Christensen,

R. Wilby, L. Hay, M. Clark,

PIRCS modelers

http://rcmlab.agron.iastate.edu

PIRCS: Approach and Lessons Learned

- 1. History PIRCS 1a & 1b
- 2. PIRCS 1c
- 3. Spinoff: 10-yr "ensemble"
- 4. Transferability
- 5. Impacts
- 6. Summary

Project to Intercompare Regional Climate Simulations (PIRCS)

- Systematically examine regional climate model simulations to identify common successes and errors
 - "Regional" ≠ "limited area"
 - Different models, parameterizations, computer hardware
 - Same domain and period of simulation
 - Consistent analysis procedures and software
- Provide a starting point for other community efforts (e.g., NARCCAP)

PIRCS Experiments

Expt. 1a: 15 May - 15 July 1988 (Drought) Expt. 1b: 1 June - 30 July 1993 (Flood) 0 0 0 **9** 9 9 0 0 Expt. 1c: July 1986 - Dec 1993 ... 9 9 9 0.0 (reanalysis boundary conditions) 0 0 0.0 Spin-off: 1979-1988 & Scenarios 6 6 6 (reanalysis & GCM boundary conditions)

PIRCS Participants

- Danish Met. Inst. (HIRHAM4; J.H. Christensen, O.B. Christensen)
- Université du Québec à Montréal (D. Caya, S. Biner)
- Scripps Institution of Oceanography (RSM; J. Roads, S. Chen)
- **☞ NCEP (RSM; S.-Y. Hong)**
- NASA Marshall (MM5/BATS; W. Lapenta)
- CSIRO (DARLAM; J. McGregor, J. Katzfey)
- Colorado State University (ClimRAMS; G. Liston)
- Iowa State University (RegCM2; Z. Pan)
- **☞ Iowa State University (MM5/LSM; D. Flory)**
- Univ. of Maryland / NASA-GSFC (GEOS; M. Fox-Rabinovitz)
- SMHI / Rossby Centre (RCA; M. Rummukainen, C. Jones)
- NOAA (RUC2; G. Grell)
- FTH (D. Luethi)
- Universidad Complutense Madrid (PROMES; M.Gaertner)
- Université Catholique du Louvain (P. Marbaix)
- Argnonne / Lawrence Livermore National Labs (MM5 V3; J. Taylor, J. Larson)
- St. Louis University (Z. Pan)

Z(500 hPa) Differences. Period = PIRCS 1b - PIRCS 1a

Area-averaged precipitation in the north-central U.S.

PIRCS 1a & 1b: Conclusions

Ensembles are important

- -Reveal common & unique problems
- -No model is "best"

Distinction between problems of

- –Lateral forcing/dyamics ("common")
- -Surface processes ("unique")

Interannual climate variation

- -Simulated in large-scale dynamics
- -Muted in precipitation response

PIRCS: Approach and Lessons Learned

- 1. History PIRCS 1a & 1b
- 2. PIRCS 1c
- 3. Spinoff: 10-yr "ensemble"
- 4. Transferability
- 5. Impacts
- 6. Summary

PIRCS 1c: Participants

Model

MM5-ISU

MM5-ANL/LLNL

RSM-Scripps

SweCLIM

CRCM

Lead Investigator

Chris Anderson

John Taylor

John Roads

Colin Jones

Sebastian Biner

Ensemble spread: Upper Ms. River

lagged ensemble

- Shown: % variations of precip.
 For each member about the mean for that ensemble
- Internal variability is less than variability due to physics
- Large year-to-year variations in spread due to physics
- The types of variability do not appear to be correlated

physics ensemble

(RW Arritt, 2004)

Upper Mississippi River

Ensemble spread: Pacific Northwest

lagged ensemble

- Internal variability is extremely small because most precipitation occurs in the winter, when large-scale control is strong
- Physics variability also is smaller than for central U.S., even in summer

physics ensemble

(RW Arritt, 2004)

Current Status

- Runs and analysis for PIRCS 1C are presently at an early stage
- Potential coordination with other projects:
 - perform complementary simulations
 - suggest diagnostics

Details: http://rcmlab.agron.iastate.edu

PIRCS: Approach and Lessons Learned

- 1. History PIRCS 1a & 1b
- 2. PIRCS 1c
- 3. Spinoff: 10-yr "ensemble"
- 4. Transferability
- 5. Impacts
- 6. Summary

Simulations

Model	Observed	GCM-control	GCM- Scenario
RegCM2	NCEP Reanalysis (1979-1988)	Hadley Centre (~1990's)	Hadley Centre (2040-2050)
HIRHAM (DMI)	66	"	"

Possible Comparisons?

Climate Change

Climate Change

R_{chnq} = Change / Max-Bias

(Pan et al., JGR, 2001)

Climate Change Ratio - Precip (RegCM) Seasonal Average

Climate Change Ratio - Tmax (RegCM) Seasonal Average

Climate Change Ratio - Tmin (RegCM) Seasonal Average

PIRCS: Approach and Lessons Learned

- 1. History PIRCS 1a & 1b
- 2. PIRCS 1c
- 3. Spinoff: 10-yr "ensemble"
- 4. Transferability
- 5. Impacts
- 6. Summary

Transferability Working Group

(proposed)
GEWEX Hydrometeorology Panel
World Climate Research Programme

Objective: Improved understanding and predictive capability through systematic intercomparisons of regional climate simulations on several continents with observations and analyses

- Build on coordinated observations from GEWEX continental scale experiments
- Provide a framework for evaluating regional model simulations of climate processes of different climatic regions.
- Evaluate transferability of regional climate models, for example a model developed to study one region as applied to other, "non-native", regions
- Examine individual and ensemble performance between domains and on individual domains

Proposal coordinated by
E. S. Takle, W. J. Gutowski, Jr., and R. W. Arritt
Iowa State University

Relevance to California?

- "When climate changes, will your model be ready?"
- How do models perform elsewhere?

RegCM3 Simulations - Various Regions

RegCM3 Simulations - Various Regions

Analysis Regions

$$R_{chng} = \frac{\left|\Delta P_{chng}\right|}{Max\left(\Delta P_{RCM}, \Delta P_{forc}, \Delta P_{itmd}\right)}$$

Relevance to California?

- "When climate changes, will your model be ready?"
- How do models perform elsewhere?
- Results suggest using large enough area to encompass other climatic regions.

PIRCS: Approach and Lessons Learned

- 1. History PIRCS 1a & 1b
- 2. PIRCS 1c
- 3. Spinoff: 10-yr "ensemble"
- 4. Transferability
- 5. Impacts
- 6. Summary

BASINS

Comparison of Simulated Stream Flow under Climate Change with Various Model Biases

Relation of Runoff to Precipitation for Various Climates

Yield Summary

(all in kg/ha)

	Mean St. Dev.	
Observed Yields	8381	1214
Simulated by CERES with		
Observed weather	8259	4494
RegCM2/NCEP	5487	3796
HIRHAM/NCEP	3446	2716
RegCM2/HadCM2 current		1777
HIRHAM/HadCM2 current	6264	3110

Yield Summary

- Deficiencies in RCMs and GCMs for driving crop models likely is due to poor timing and amounts of precipitation
- Crop models expose and amplify vegetation-sensitive climate features of a GCM or RCM

PIRCS: Approach and Lessons Learned

- 1. History PIRCS 1a & 1b
- 2. PIRCS 1c
- 3. Spinoff: 10-yr "ensemble"
- 4. Transferability
- 5. Impacts
- 6. Summary

PIRCS: Lessons Learned

- 1. Ensembles are important
- 2. Models have common precipitation biases (daily and interannual)
- 3. Must understand model behavior in a variety of climates
- 4. Two-way interaction with impacts groups is vital
- 5. Require common data formatting

Acknowledgements

- Primary Funding: Electric Power Research Institute (EPRI) NOAA
- Guidance/Support: Andrew Staniforth, Eugenia Kalnay, Filippo Giorgi, Roger Pielke, AMIP group
- Special Thanks: Participating Modelers

Without sufficient resolution, it just doesn't look right.

